How to code a simulation with LAMMPS

Ella Carlander and Michael Bolish Bucknell University

Motivation and Background: Computer Simulations

- No "impurities"
- Well-defined model
- Molecular Dynamics (MD)
 - Atoms/Particles
 - \circ Potential \rightarrow Forces \rightarrow Predict motion

• Address questions not accessible by theory or experiments

Motivation and Background: Granular Media

Granular Media: collection of distinct macroscopic particles

Lacks theoretical foundation

This plane is where - granular media exists

What is LAMMPS?

"Large-scale Atomic/Molecular Massively Parallel Simulator"

- Classical Molecular Dynamics code
 - Open-source
- Provides Potential
 - Solid-state, soft-matter, coarse-grained
 - Atomic, meso, continuum

For Molecular Dynamics (MD) Simulations: LAMMPS is very powerful

Particle interactions in Python:

```
# AA Interactions
  for i in range(Na-1):
    xi=x[i]
    vi=v[i]
    for j in range(i+1,Na):
      xij=xi-x[j]
      yij=yi-y[j]
      #minimum image convention
      if xij > Ldiv2: xij -= L
      elif xij < - Ldiv2: xij += L
      if yij > Ldiv2: yij -= L
      elif yij < - Ldiv2: yij += L
      rijto2 = xij*xij + yij*yij
      rij = rijto2**0.5
      if(rij < rcutAA):</pre>
        Vtot += (1.0 - rij/rcutAA)**2
```

The same interactions in LAMMPS:

pair_style dpd \$T \${rmax} 11223
pair_coeff 1 1 \${Aaa} \${gamma} \${rcutAA}

To achieve the same simulation: Python Script \rightarrow 525 lines LAMMPS Script \rightarrow 50 lines

Outline

- General Plan
 - Setting up system
 - Running a Simulation
 - Collecting Results
 - More complex features
- Our System
- Preliminary Results

Setting Up A System

- Simulation Region
 - Dimensions/Shape
 - Temperature
 - Units
- Atom Parameters
- Initializing Atoms to System
- Potential/Forces
- Periodic Boundary Conditions

Setting up your Simulation Region: Dimension/Shape

Setting up your Simulation Region: Temperature

Focused on low temperatures for jamming transition

Setting up your Simulation Region: Defining Units

Atom Parameters: Type, Mass, N, and Size

Telling the computer what you plan to put into your simulation region

Initializing Atoms into System

From Scratch: Our System

Generate Random Position and Velocity for each Particle

- Lammps command
 - 1. Random Positions
 - 2. Random Velocities

From File

Initialize Specific Position and Velocity for each Particle

- Data File read in
 - Random positions and Velocities at same time

Particle Interactions

particles in simulation \rightarrow tell computer how to interact

Goal: Use model to govern forces between particles

Simulation Technique: Pair Coefficients

pair_style lets us choose the desired model for the potential pair_style dpd \$T \${rmax} 11223 pair_coeff 1 1 \${Aaa} \${gamma} \${rcutAA}

Define necessary parameters (A, gamma, rcut) with *pair_coeff* Necessary for each possible combination of particle types

Particle Interactions: Our Simulation

Forces only arise when the particles overlap.

System: Mini Summary

contact forces

Periodic Boundary Conditions

- Surrounded by images of itself
 - Many-particle simulation
 - Desired physics
- Rc=Ri+Rj
 - "Minimum image convention"
 - Particle's neighbors
- Atoms cross boundary, re-enter other side

Periodic Boundary Conditions: Short Video

Running a Simulation

- Numerical Integration
- Run
- Minimization

Numerical Integration

General System

 $\frac{Initialization}{Set for each particle i}$ $\begin{array}{l} \text{Position } r_i (t_0) \\ \text{Velocity } v_i(t_0) \end{array}$

Loop over Time Steps

Time Step:

Update for each particle *i* Position $r_i(t_0) \rightarrow r_{i,}(t+\Delta t)$ Velocity $v_i(t_0) \rightarrow v_{i,}(t+\Delta t)$

Energy vs. Log(MD Step)

Minimization

 Random positions → too much overlap

 Minimize total potential energy

Collecting Results

Two Approaches:

b. One particle

Snapshot (moment in time)
 a. All particles

1. Output File

Collecting Results: Over Time

- Overview of the simulation results, automatically printed
- Provides information about the system over time

Collecting Results: Snapshot

• Provides a snapshot of individual particles at one time-step

Dump File

2.

More Complex Features

Two examples of further complexities:

- 1. Pins \rightarrow fixing certain particles
- 2. Shearing \rightarrow box deformation
 - a. Positions
 - b. Velocities

More Complex Features: Pins

Placed on Square Lattice

Placed on Triangular Lattice

command creates a specified type of lattice (square, triangle, hexagonal, custom) and places the pins on it

Randomly Placed

command randomly places particles

More Complex Features: Shear

Desired Box Deformation:

Simulation Technique:

"Lees-Edwards Boundary Conditions"

More Complex Features: Shear

Simulation box gets flipped

More Complex Features: Shear Continued

2-d, **fixed pin box**, two types of particles

2-d, pinned, **sheared box**, two types of particles

Conclusion

- Computer simulations are extremely useful research tools
- For granular media, MD simulations are particularly useful
- LAMMPS is a highly optimized tool for building MD simulations

To summarize \rightarrow Steps for building a simulation with LAMMPS:

- 1. Decide what physics you want to observe
- 2. Consider what type of system will allow you to observe that physics
- 3. Choose parameters
- 4. Run the simulation
- 5. Collect and analyze results

Acknowledgements and Questions

- Katharina Vollmayr-Lee, Amy Graves, Cacey Bester, Brian Utter
- Supported by NSF Grant DMR-1905737

